Paper
Document
Submit new version
Download
Flag content
1

Functionally informed fine-mapping and polygenic localization of complex trait heritability

1
TipTip
Save
Document
Submit new version
Download
Flag content

Abstract

Fine-mapping aims to identify causal variants impacting complex traits. We propose PolyFun, a computationally scalable framework to improve fine-mapping accuracy by leveraging functional annotations across the entire genome—not just genome-wide-significant loci—to specify prior probabilities for fine-mapping methods such as SuSiE or FINEMAP. In simulations, PolyFun + SuSiE and PolyFun + FINEMAP were well calibrated and identified >20% more variants with a posterior causal probability >0.95 than identified in their nonfunctionally informed counterparts. In analyses of 49 UK Biobank traits (average n = 318,000), PolyFun + SuSiE identified 3,025 fine-mapped variant–trait pairs with posterior causal probability >0.95, a >32% improvement versus SuSiE. We used posterior mean per-SNP heritabilities from PolyFun + SuSiE to perform polygenic localization, constructing minimal sets of common SNPs causally explaining 50% of common SNP heritability; these sets ranged in size from 28 (hair color) to 3,400 (height) to 2 million (number of children). In conclusion, PolyFun prioritizes variants for functional follow-up and provides insights into complex trait architectures. PolyFun is a computationally scalable framework for functionally informed fine-mapping that makes full use of genome-wide data. It prioritizes more variants than previous methods when applied to 49 complex traits from UK Biobank.

Paper PDF

Empty State
This PDF hasn't been uploaded yet.
Do not upload any copyrighted content to the site, only open-access content.
or