ABSTRACT Despite their importance in disease and evolution, highly identical segmental duplications (SDs) have been among the last regions of the human reference genome (GRCh38) to be finished. Based on a complete telomere-to-telomere human genome (T2T-CHM13), we present the first comprehensive view of human SD organization. SDs account for nearly one-third of the additional sequence increasing the genome-wide estimate from 5.4% to 7.0% (218 Mbp). An analysis of 266 human genomes shows that 91% of the new T2T-CHM13 SD sequence (68.3 Mbp) better represents human copy number. We find that SDs show increased single-nucleotide variation diversity when compared to unique regions; we characterize methylation signatures that correlate with duplicate gene transcription and predict 182 novel protein-coding gene candidates. We find that 63% (35.11/55.7 Mbp) of acrocentric chromosomes consist of SDs distinct from rDNA and satellite sequences. Acrocentric SDs are 1.75-fold longer (p=0.00034) than other SDs, are frequently shared with autosomal pericentromeric regions, and are heteromorphic among human chromosomes. Comparing long-read assemblies from other human (n=12) and nonhuman primate (n=5) genomes, we use the T2T-CHM13 genome to systematically reconstruct the evolution and structural haplotype diversity of biomedically relevant ( LPA, SMN ) and duplicated genes ( TBC1D3, SRGAP2C, ARHGAP11B ) important in the expansion of the human frontal cortex. The analysis reveals unprecedented patterns of structural heterozygosity and massive evolutionary differences in SD organization between humans and their closest living relatives.