Paper
Document
Download
Flag content
40

Structural-Functional Brain Network Coupling Predicts Human Cognitive Ability

Authors
Johanna Lea Popp,Jonas Alexander Thiele
+5 authors
,Jonas Thiele
Published
Jan 1, 2023
Show more
Save
TipTip
Document
Download
Flag content
40
TipTip
Save
Document
Download
Flag content

Abstract

Individual differences in general cognitive ability (GCA) have a biological basis within the structure and function of the human brain. Network neuroscience investigations revealed neural correlates of GCA in structural as well as in functional brain networks. However, whether the relationship between structural and functional networks, the structural-functional brain network coupling (SC-FC coupling), is related to individual differences in GCA remains an open question. We used data from 1030 adults of the Human Connectome Project, derived structural connectivity from diffusion weighted imaging, functional connectivity from resting-state fMRI, and assessed GCA as a latent g-factor from 12 cognitive tasks. Two similarity measures and six communication measures were used to model possible functional interactions arising from structural brain networks. SC-FC coupling was estimated as the degree to which these measures align with the actual functional connectivity, providing insights into different neural communication strategies. At the whole-brain level, higher GCA was associated with higher SC-FC coupling, but only when considering path transitivity as neural communication strategy. Taking region-specific variations in the SC-FC coupling strategy into account and differentiating between positive and negative associations with GCA, allows for prediction of individual cognitive ability scores in a cross-validated prediction framework (correlation between predicted and observed scores: r = .25, p < .001). The same model also predicts GCA scores in a completely independent sample (N = 567, r = .19, p < .001). Our results propose structural-functional brain network coupling as a neurobiological correlate of GCA and suggest brain region-specific coupling strategies as neural basis of efficient information processing predictive of cognitive ability.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.