Abstract The SARS-CoV-2 receptor, ACE2, is found on pericytes, contractile cells enwrapping capillaries that regulate brain, heart and kidney blood flow. ACE2 converts vasoconstricting angiotensin II into vasodilating angiotensin-(1-7). In brain slices from hamster, which has an ACE2 sequence similar to human ACE2, angiotensin II alone evoked only a small capillary constriction, but evoked a large pericyte-mediated capillary constriction generated by AT1 receptors in the presence of the SARS-CoV-2 receptor binding domain (RBD). The effect of the RBD was mimicked by blocking ACE2. A mutated non-binding RBD did not potentiate constriction. A similar RBD-potentiated capillary constriction occurred in human cortical slices. This constriction reflects an RBD-induced decrease in the conversion of angiotensin II to angiotensin-(1-7). The clinically-used drug losartan inhibited the RBD-potentiated constriction. Thus AT1 receptor blockers could be protective in SARS-CoV-2 infection by reducing pericyte-mediated blood flow reductions in the brain, and perhaps the heart and kidney.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.