Paper
Document
Download
Flag content
7

MiniFAST: A sensitive and fast miniaturized microscope forin vivoneural recording

7
TipTip
Save
Document
Download
Flag content

Abstract

Abstract Observing the activity of large populations of neurons in vivo is critical for understanding brain function and dysfunction. The use of fluorescent genetically-encoded calcium indicators (GECIs) in conjunction with miniaturized microscopes is an exciting emerging toolset for recording neural activity in unrestrained animals. Despite their potential, current miniaturized microscope designs are limited by using image sensors with low frame rates, sensitivity, and resolution. Beyond GECIs, there are many neuroscience applications which would benefit from the use of other emerging neural indicators, such as fluorescent genetically-encoded voltage indicators (GEVIs) that have faster temporal resolution to match neuron spiking, yet, require imaging at high speeds to properly sample the activity-dependent signals. We integrated an advanced CMOS image sensor into a popular open-source miniaturized microscope platform. MiniFAST is a fast and sensitive miniaturized microscope capable of 1080p video, 1.5 µm resolution, frame rates up to 500 Hz and high gain ability (up to 70 dB) to image in extremely low light conditions. We report results of high speed 500 Hz in vitro imaging of a GEVI and ∼300 Hz in vivo imaging of transgenic Thy1-GCaMP6f mice. Finally, we show the potential for a reduction in photobleaching by using high gain imaging with ultra-low excitation light power (0.05 mW) at 60 Hz frame rates while still resolving Ca 2+ spiking activity. Our results extend miniaturized microscope capabilities in high-speed imaging, high sensitivity and increased resolution opening the door for the open-source community to use fast and dim neural indicators.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.