Paper
Document
Download
Flag content
18

Hierarchical organization of spontaneous co-fluctuations in densely-sampled individuals using fMRI

Save
TipTip
Document
Download
Flag content
18
TipTip
Save
Document
Download
Flag content

Abstract

ABSTRACT Edge time series decompose FC into its framewise contributions. Previous studies have focused on characterizing the properties of high-amplitude frames, including their cluster structure. Less is known about middle- and low-amplitude co-fluctuations. Here, we address those questions directly, using data from two dense-sampling studies: the MyConnectome project and Midnight Scan Club. We develop a hierarchical clustering algorithm to group peak co-fluctuations of all magnitudes into nested and multi-scale clusters based on their pairwise concordance. At a coarse scale, we find evidence of three large clusters that, collectively, engage virtually all canonical brain systems. At finer scales, however, each cluster is dissolved, giving way to increasingly refined patterns of co-fluctuations involving specific sets of brain systems. We also find an increase in global co-fluctuation magnitude with hierarchical scale. Finally, we comment on the amount of data needed to estimate co-fluctuation pattern clusters and implications for brain-behavior studies. Collectively, the findings reported here fill several gaps in current knowledge concerning the heterogeneity and richness of co-fluctuation patterns as estimated with edge time series while providing some practical guidance for future studies.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.