Abstract Many bacteria use the flagellum for locomotion and chemotaxis. Its bi-directional rotation is driven by the membrane-embedded motor, which uses energy from the transmembrane ion gradient to generate torque at the interface between stator units and rotor. The structural organization of the stator unit (MotAB), its conformational changes upon ion transport and how these changes power rotation of the flagellum, remain unknown. Here we present ~3 Å-resolution cryo-electron microscopy reconstructions of the stator unit in different functional states. We show that the stator unit consists of a dimer of MotB surrounded by a pentamer of MotA. Combining structural data with mutagenesis and functional studies, we identify key residues involved in torque generation and present a mechanistic model for motor function and switching of rotational direction. One Sentence Summary Structural basis of torque generation in the bidirectional bacterial flagellar motor
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.