Paper
Document
Download
Flag content
11

TranceptEVE: Combining Family-specific and Family-agnostic Models of Protein Sequences for Improved Fitness Prediction

Save
TipTip
Document
Download
Flag content
11
TipTip
Save
Document
Download
Flag content

Abstract

Abstract Modeling the fitness landscape of protein sequences has historically relied on training models on family-specific sets of homologous sequences called Multiple Sequence Alignments. Many proteins are however difficult to align or have shallow alignments which limits the potential scope of alignment-based methods. Not subject to these limitations, large protein language models trained on non-aligned sequences across protein families have achieved increasingly high predictive performance – but have not yet fully bridged the gap with their alignment-based counterparts. In this work, we introduce TranceptEVE – a hybrid method between family-specific and family-agnostic models that seeks to build on the relative strengths from each approach. Our method gracefully adapts to the depth of the alignment, fully relying on its autoregressive transformer when dealing with shallow alignments and leaning more heavily on the family-specific models for proteins with deeper alignments. Besides its broader application scope, it achieves state-of-the-art performance for mutation effects prediction, both in terms of correlation with experimental assays and with clinical annotations from ClinVar.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.