Abstract

Abstract Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emission and loss of biodiversity. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value. Faba bean ( Vicia faba L.) has a high yield potential and is well-suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has grown to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, though with significant copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association (GWA) analysis to dissect the genetic basis of hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate improvement of sustainable protein production across Mediterranean, subtropical, and northern temperate agro-ecological zones.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.