Acute myeloid leukemia (AML) and effector cells of immune checkpoint blockade (ICB) therapy co-reside in a complex bone marrow (BM) milieu. The interplay of tumor intrinsic and microenvironment (TME) mechanisms that influences the response to ICB-based therapies in AML have not been elucidated. Here we report our analyses of single cell RNA profiling of more than 127,000 BM cells from healthy donors and relapsed/refractory (R/R) AML patients at pre/post treatment with azacitidine/nivolumab, paired with single cell T cell receptor (TCR) repertoire profiles, to uncover factors impacting response and resistance. Loss of chromosome 7/7q conferred an immunosuppressive TME and was associated with resistance to ICB-based therapy in R/R AML. Our trajectory analysis revealed a continuum of CD8+ T cell phenotypes, characterized by differential expression of granzyme B (GZMB) and GZMK. GZMK expression defined a BM residing memory CD8+ T cell subset with stem-like properties likely an intermediary between naive and cytotoxic lymphocytes. Responses to ICB-based therapy were primarily driven by novel and expanded T cell clonotypes. Our findings support an adaptable T cell plasticity in response to PD-1 blockade in AML. Disentangling AML cells from their complex, immune-rich microenvironment revealed characteristics that shaped resistance to ICB-based therapy and could inform strategies to target AML vulnerabilities. SignificanceDetermining the cellular and molecular underpinnings of response and resistance to PD-1 blockade based therapy in AML can guide immune-based therapeutic strategies. Our results reveal AML intrinsic characteristics (chromosome 7/7q status and oxidative stressors) and tumor microenvironment to modulate responses to checkpoint blockers. CD8 cells exist in the bone marrow in a continuum with GZMK expression defining a memory, stem-like T cell population that could play a role in response to therapy.
Support the authors with ResearchCoin
Support the authors with ResearchCoin