Paper
Document
Download
Flag content
15

Temporal and spatial topography of cell proliferation in cancer

15
TipTip
Save
Document
Download
Flag content

Abstract

SUMMARY Proliferation is a fundamental trait of cancer cells but is poorly characterized in tumors by classical histologic methods. We use multiplexed tissue imaging to quantify the abundance of multiple cell cycle regulating proteins at single-cell level and develop robust multivariate proliferation metrics. Across cancers, the proliferative architecture is organized at two distinct spatial scales: large domains, and local niches enriched for specific immune lineages. A subset of tumor cells express cell cycle regulators in canonical patterns consistent with unrestrained proliferation, a phenomenon we refer to as “cell cycle coherence”. By contrast, the cell cycles of other tumor cell populations are skewed toward a specific phase or characterized by non-canonical (incoherent) marker combinations. Coherence varies across space, with changes in oncogene activity, and with therapeutic intervention, and is associated with aggressive behavior. Multivariate measures capture clinically significant features of cancer proliferation, a fundamental step in enabling more precise use of anti-cancer therapies.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.