Paper
Document
Download
Flag content
4

Characterization of morpho-functional traits in mesophotic corals reveals optimized light capture and photosynthesis

Save
TipTip
Document
Download
Flag content
4
TipTip
Save
Document
Download
Flag content

Abstract

Abstract The morphology and skeleton architecture of photosynthetic corals modulates the light capture and functioning of the coral-algal symbiosis on shallow-water corals. Since corals can thrive on mesophotic reefs under extreme light-limited conditions, we hypothesized that microskeletal coral features optimize light capture under low-light environments. Using micro-computed tomography scanning, we conducted a comprehensive three-dimensional (3D) assessment of small-scale skeleton morphology of the depth-generalist coral Stylophora pistillata collected from shallow (5 m) and mesophotic (45 m) depths. We detected a high phenotypic diversity between depths, resulting in two distinct morphotypes, with calyx diameter, theca height, and corallite marginal spacing contributing to most of the variation between depths. To determine whether such depth-specific morphotypes affect coral light capture and photosynthesis on the corallite-scale, we developed 3D simulations of light propagation based on photosynthesis-irradiance parameters. We found that corals associated with shallow morphotypes dissipated excess light through self-shading microskeletal features; while mesophotic morphotypes facilitated enhanced light absorption and photosynthesis under low-light conditions. We conclude that the mesophotic coral architecture provides a greater ability to trap solar energy and efficiently exploit the limited light conditions, and suggest that morphological modifications play a key role in the photoadaptation response to low-light.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.