Paper
Document
Download
Flag content
10

The age of reason: Functional brain network development during childhood

10
TipTip
Save
Document
Download
Flag content

Abstract

Abstract Human childhood is characterized by dramatic changes in the mind and brain. However, little is known about the large-scale intrinsic cortical network changes that occur during childhood due to methodological challenges in scanning young children. Here, we overcome this barrier by using sophisticated acquisition and analysis tools to investigate functional network development in children between the ages of 4 and 10 years ( n = 92). At multiple spatial scales, age is positively associated with brain network segregation. At the system level, age was associated with segregation of systems involved in attention from those involved in abstract cognition, and with integration among attentional and perceptual systems. Associations between age and functional connectivity are most pronounced in visual and medial prefrontal cortex, the two ends of a gradient from perceptual, externally oriented cortex to abstract, internally oriented cortex. These findings suggest that both ends of the sensory-association gradient may develop early, in contrast to the classical theories that cortical maturation proceeds from back to front, with sensory areas developing first and association areas developing last. More mature patterns of brain network architecture, controlling for age, were associated with better visuospatial reasoning abilities. Our results suggest that as cortical architecture becomes more specialized, children become more able to reason about the world and their place in it. Significance Anthropologists have called the transition from early to middle childhood the “age of reason”, when children across cultures become more independent. We employ cutting-edge neuroimaging acquisition and analysis approaches to investigate associations between age and functional brain architecture in childhood. Age was positively associated with segregation between cortical systems that process the external world, and those that process abstract phenomena like the past, future, and minds of others. Surprisingly, we observed pronounced development at both ends of the sensory-association gradient, challenging the theory that sensory areas develop first and association areas develop last. Our results open new directions for research into how brains reorganize to support rapid gains in cognitive and socioemotional skills as children reach the age of reason.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.