Abstract Since its emergence in 2019, circulating populations of the new coronavirus continuously acquired genetic diversity. At the end of 2020, a variant named 20I/501Y.V1 (lineage B.1.1.7) emerged and replaced other circulating strains in several regions. This phenomenon has been poorly associated to biological evidence that this variant and original strain exhibit different phenotypic characteristics. Here, we analyse the replication ability of this new variant in different cellular models using for comparison an ancestral D614G European strain (lineage B1). Results from comparative replication kinetics experiments in vitro and in a human reconstituted bronchial epithelium showed no difference. However, when both viruses were put in competition in a human reconstituted bronchial epithelium, the 20I/501Y.V1 variant outcompeted the ancestral strain. Altogether, these findings demonstrate that this new variant replicates more efficiently and could contribute to better understand the progressive replacement of circulating strains by the SARS-CoV-2 20I/501Y.V1 variant. Importance The emergence of several SARS-CoV-2 variants raised numerous questions concerning the future course of the pandemic. We are currently observing a replacement of the circulating viruses by the variant from the United Kingdom known as 20I/501Y.V1 from B.1.1.7 lineage but there is little biological evidence that this new variant exhibit a different phenotype. In the present study, we used different cellular models to assess the replication ability of the 20I/501Y.V1 variant. Our results showed that this variant replicate more efficiently in a human reconstituted bronchial epithelium, which may explain why it spreads so rapidly in human populations.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.