Microcrystal electron diffraction (MicroED) is transforming the visualization of molecules from nanocrystals, rendering their three-dimensional atomic structures from previously unamenable samples. Peptidic structures determined by MicroED include naturally occurring peptides, synthetic protein fragments and peptide-based natural products. However, as a diffraction method, MicroED is beholden to the phase problem, and its de novo determination of structures remains a challenge. ARCIMBOLDO, an automated, fragment-based approach to structure determination. It eliminates the need for atomic resolution, instead enforcing stereochemical constraints through libraries of small model fragments, and discerning congruent motifs in solution space to ensure validation. This approach expands the reach of MicroED to presently inaccessible peptidic structures including segments of human amyloids, and yeast and mammalian prions, and portends a more general phasing solution while limiting model bias for a wider set of chemical structures.
Support the authors with ResearchCoin
Support the authors with ResearchCoin