Changes in the function of inhibitory interneurons (INs) during cortical development could contribute to the pathophysiology of neurodevelopmental disorders. Using all-optical in vivo approaches in postnatal mouse somatosensory cortex (S1), we find that parvalbumin (PV) IN precursors are hypoactive and decoupled from excitatory neurons in Fmr1-/- mice, a model of Fragile X Syndrome (FXS). This leads to a loss of PV-INs in both mice and humans with FXS. Increasing the activity of future PV-INs in neonatal Fmr1-/- mice restores PV density and ameliorates transcriptional dysregulation in S1, but not circuit dysfunction. Critically, administering a novel allosteric modulator of Kv3.1 channels after the S1 critical period does rescue circuit dynamics and tactile defensiveness. Symptoms in FXS and related disorders could be mitigated by targeting PV-INs.
Support the authors with ResearchCoin
Support the authors with ResearchCoin