Interferons (IFNs) are critical for anti-viral host defence. Type-1 and type-3 IFNs are typically associated with early control of viral replication and promotion of inflammatory immune responses; however, less is known about the role of IFN{gamma} in anti-viral immunity, particularly in the context of SARS-CoV-2. We have previously observed that lung infection with attenuated bacteria Mycobacterium bovis BCG achieved though intravenous (iv) administration provides strong protection against SARS-CoV-2 (SCV2) infection and disease in two mouse models. Assessment of the pulmonary cytokine milieu revealed that iv BCG induces a robust IFN{gamma} response and low levels of IFN{beta}. Here we examined the role of ongoing IFN{gamma} responses due to pre-established bacterial infection on SCV2 disease outcomes in two murine models. We report that IFN{gamma} is required for iv BCG induced reduction in pulmonary viral loads and that this outcome is dependent on IFN{gamma} receptor expression by non-hematopoietic cells. Further analysis revealed that BCG infection promotes the upregulation of interferon-stimulated genes (ISGs) with reported anti-viral activity by pneumocytes and bronchial epithelial cells in an IFN{gamma}-dependent manner, suggesting a possible mechanism for the observed protection. Finally, we confirmed the importance of IFN{gamma} in these anti-viral effects by demonstrating that the recombinant cytokine itself provides strong protection against SCV2 challenge when administered intranasally. Together, our data show that a pre-established IFN{gamma} response within the lung is protective against SCV2 infection, suggesting that concurrent or recent infections that drive IFN{gamma} may limit the pathogenesis of SCV2 and supporting possible prophylactic uses of IFN{gamma} in COVID-19 management.
Support the authors with ResearchCoin
Support the authors with ResearchCoin