The discovery of membrane-enclosed, metabolically functional organelles in Bacteria and Archaea has transformed our understanding of the subcellular complexity of prokaryotic cells. However, whether prokaryotic organelles emerged early or late in evolutionary history remains unclear and limits understanding of the nature and cellular complexity of early life. Biomineralization of magnetic nanoparticles within magnetosomes by magnetotactic bacteria (MTB) is a fascinating example of prokaryotic organelles. Here, we reconstruct 168 metagenome-assembled MTB genomes from various aquatic environments and waterlogged soils. These genomes represent nearly a 3-fold increase over the number currently available, and more than double the known MTB species. Phylogenomic analysis reveals that these newly described genomes belong to 13 Bacterial phyla, six of which were previously not known to include MTB. These findings indicate a much wider taxonomic distribution of magnetosome organelle biogenesis across the domain Bacteria than previously thought. Comparative genome analysis reveals a vast diversity of magnetosome gene clusters involved in magnetosomal biogenesis in terms of gene content and synteny residing in distinct taxonomic lineages. These gene clusters therefore represent a promising, diverse genetic resource for biosynthesizing novel magnetic nanoparticles. Finally, our phylogenetic analyses of the core magnetosome proteins in this largest available and taxonomically diverse dataset support an unexpectedly early evolutionary origin of magnetosome biomineralization, likely ancestral to the origin of the domain Bacteria. These findings emphasize the potential biological significance of prokaryotic organelles on the early Earth and have important implications for our understanding of the evolutionary history of cellular complexity.
Support the authors with ResearchCoin
Support the authors with ResearchCoin