ABSTRACT The kidney is a complex organ composed of more than 30 terminally differentiated cell types that all are required to perform its numerous homeostatic functions. Defects in kidney development are a significant cause of chronic kidney disease in children, which can lead to kidney failure that can only be treated by transplant or dialysis. A better understanding of molecular mechanisms that drive kidney development is important for designing strategies to enhance renal repair and regeneration. In this study, we profiled gene expression in the developing mouse kidney at embryonic day 14.5 at single cell resolution. Consistent with previous studies, clusters with distinct transcriptional signatures clearly identify major compartments and cell types of the developing kidney. Cell cycle activity distinguishes between the “primed” and “self-renewing” sub-populations of nephron progenitors, with increased expression of the cell cycle related genes Birc5, Cdca3, Smc2 and Smc4 in “primed” nephron progenitors. Augmented Birc5 expression was also detected in immature distal tubules and a sub-set of ureteric bud cells, suggesting that Birc5 might be a novel key molecule required for early events of nephron patterning and tubular fusion between the distal nephron and the collecting duct epithelia.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.