Paper
Document
Download
Flag content
13

Predicting the Specificity-Determining Positions of Paralogous Complexes

Save
TipTip
Document
Download
Flag content
13
TipTip
Save
Document
Download
Flag content

Abstract

ABSTRACT Due to its clinical relevance, modulation of functionally relevant amino acids in protein-protein complexes has attracted a great deal of attention. To this end, many approaches have been proposed to predict partner-selecting, i.e., specificity-determining positions in evolutionarily close complexes. These approaches can be grouped into sequence-based machine learning and structure-based energy-driven methods. In this work, we assessed these methods’ ability to map the specificity-determining positions of Axl, a receptor tyrosine kinase involved in cancer progression and immune-related diseases. For this, we used three sequence-based predictors – SDPred, Multi-RELIEF, and Sequence Harmony – and a structure-based approach by utilizing HADDOCK and extensive molecular dynamics simulations. As a result, we show that (i) sequence-based methods overpredict the number of specificity-determining positions for Axl complexes and that (ii) combining sequence-based approaches with HADDOCK provides the most coherent set of predictions. Our work lays out a critical study on the comparative performance specificity-determining position predictors. It also presents a combined sequence-structure-based approach, which can guide the development of therapeutic molecules capable of combatting Axl misregulation in different types of diseases.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.