Paper
Document
Download
Flag content
1

Frequency-specific coactivation patterns in resting-state and their alterations in schizophrenia: an fMRI study

Save
TipTip
Document
Download
Flag content
1
TipTip
Save
Document
Download
Flag content

Abstract

Abstract The resting-state human brain is a dynamic system that shows frequency-specific characteristics. Coactivation pattern (CAP) analysis has been recently used to identify recurring brain states sharing similar coactivation configurations. However, whether and how CAPs differ across different sub-frequency bands are unknown. In the current study, in addition to the typical low-frequency range (0.01 - 0.08 Hz), the spatial and temporal characteristics of CAPs in four sub-frequency bands, slow-5 (0.01 - 0.027 Hz), slow-4 (0.027 - 0.073 Hz), slow-3 (0.073 - 0.198 Hz), and slow-2 (0.198 - 0.25 Hz), were studied. Six CAP states were obtained for each band., The CAPs from the typical frequency range were spatially largely overlapped with those in slow-5, slow-4 and slow-3 but not with those in slow-2. With the increase of frequency, the CAP state became more unstable and resulted in an overall shorter persistence. The spatial and temporal characteristics of slow-4 and slow-5 were further compared, because they constitute most power of the resting-state fMRI signals. In general, slow-4 showed stronger coactivations or co-deactivations in subcortical regions, while slow-5 showed stronger coactivations or co-deactivations in large-scale cortical networks such as the dorsal attention network. Lastly, frequency-dependent dynamic alterations were also observed in schizophrenia patients. Combining the information obtained from both slow-5 and slow-4 increased the classification accuracy of schizophrenia patients than only using the typical range. In conclusion, our results revealed that the spatial and temporal characteristics of CAP state varied at different frequency bands, which could be helpful for identifying brain alterations in schizophrenia.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.