Abstract Coronavirus disease 2019 is a respiratory infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Evidence on the pathogenesis of SARS-CoV-2 is accumulating rapidly. In addition to structural proteins such as Spike and Envelope, the functional roles of non-structural and accessory proteins in regulating viral life cycle and host immune responses remain to be understood. Here, we show that open reading frame 8 (ORF8) acts as messenger for inter-cellular communication between alveolar epithelial cells and macrophages during SARS-CoV-2 infection. Mechanistically, ORF8 is a secretory protein that can be secreted by infected epithelial cells via both conventional and unconventional secretory pathways. The unconventionally secreted ORF8 recognizes the IL17RA receptor of macrophages and induces cytokine release. However, conventionally secreted ORF8 cannot bind to IL17RA due to N-linked glycosylation. Furthermore, we found that Yip1 interacting factor homolog B (YIF1B) is a channel protein that translocates unglycosylated ORF8 into vesicles for unconventional secretion. Blocking the unconventional secretion of ORF8 via a YIF1B knockout in hACE2 mice attenuates inflammation and yields delayed mortality following SARS-CoV-2 challenge.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.