Paper
Document
Download
Flag content
84

Immunization with a self-assembling nanoparticle vaccine displaying EBV gH/gL protects humanized mice against lethal viral challenge

84
TipTip
Save
Document
Download
Flag content

Abstract

Summary/Abstract Epstein-Barr virus (EBV) is a cancer-associated pathogen responsible for 140,000 deaths per year. EBV is also the etiological agent of infectious mononucleosis and is associated with multiple sclerosis and rheumatoid arthritis. Thus, an EBV vaccine could alleviate significant morbidity and mortality. EBV is orally transmitted and has tropism for both epithelial cells and B cells which are present in the oral cavity. Therefore, a prophylactic vaccine would need to prevent infection of both cell types. Passive transfer neutralizing monoclonal antibodies targeting the viral gH/gL glycoprotein complex prevent experimental EBV infection in humanized mice and rhesus macaques, suggesting that gH/gL is an attractive vaccine candidate. Here, we produced and evaluated the immunogenicity of several nanoparticle immunogens displaying gH/gL with distinct valencies and geometries. After one or two immunizations, all nanoparticles elicited superior binding and neutralizing titers relative to monomeric gH/gL. Antibodies elicited by a computationally designed self-assembling nanoparticle that displays 60 copies of the gH/gL protein conferred protection against a lethal dose of EBV in a humanized mouse challenge model, whereas antibodies elicited by monomeric gH/gL did not. Taken together, these data motivate further development of gH/gL nanoparticle vaccine candidates for EBV.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.