Paper
Document
Submit new version
Download
Flag content
Preprint
28

Mutation Rate Evolution Drives Immune Escape In Mismatch Repair-Deficient Cancer

28
TipTip
Save
Document
Submit new version
Download
Flag content

Abstract

SUMMARY Mutation rate optimisation drives evolution and immune evasion of bacteria and lentiviral strains, including HIV. Whether evolving cancer lineages similarly adapt mutation rates to increase tumour cell fitness is unknown. Here, by mapping the clonal topography of mismatch repair-deficient (MMRd) colorectal cancer, we show that genomic MMRd mutability co-evolves with neoantigen selection to drive intratumour diversification and immune escape. Mechanistically, we find that microsatellite instability modulates subclonal DNA repair by toggling two hypermutable mononucleotide homopolymer runs in the mismatch repair genes MSH6 and MSH3 (C8 and A8, respectively) through stochastic frameshift switching. Spontaneous mutation and reversion at these evolvability switches modulates subclonal mutation rate, mutation bias, and clonal HLA diversity during MMRd cancer evolution. Combined experimental and simulation studies demonstrate that subclonal immune selection favours incremental MMR mutations. MMRd cancers thus fuel intratumour heterogeneity by adapting subclonal mutation rate and mutation bias to immune selection, revealing a conserved co-evolutionary arms race between neoantigen selection and adaptive genomic mutability. Our work reveals layers of mutational complexity and microsatellite biology in MMRd cancer evolution previously hidden in bulk analyses.

Paper PDF

Empty State
This PDF hasn't been uploaded yet.
Do not upload any copyrighted content to the site, only open-access content.
or