Here, we show that hypoxia drives especially long-lasting epithelial-mesenchymal transition (EMT) in pancreatic ductal adenocarcinoma (PDAC) primarily through a positive-feedback histone methylation-MAPK signaling axis. We find that transformed cells preferentially undergo EMT in hypoxic tumor regions in multiple model systems and that hypoxia drives a cell-autonomous EMT in PDAC cells which, unlike EMT in response to growth factors, can last for weeks. We further demonstrate that hypoxia reduces histone demethylase KDM2A activity, suppresses PP2 family phosphatase expression, and activates MAPKs to post-translationally stabilize histone methyltransferase NSD2, leading to an H3K36me2-dependent EMT in which hypoxia-inducible factors play only a supporting role. This mechanism can be antagonized in vivo by combinations of MAPK inhibitors that may be effective in multi-drug therapies designed to target EMT.
Support the authors with ResearchCoin
Support the authors with ResearchCoin