Mycobacterium abscessus (Mab) is a clinically significant pathogen and a highly genetically diverse species due to its large accessory genome. The functional consequence of this diversity remains unknown mainly because, to date, functional genomic studies in Mab have been primarily performed on reference strains. Given the growing public health threat of Mab infections, understanding the functional genomic differences among Mab clinical isolates can provide more insight into how its genetic diversity influences gene essentiality, clinically relevant phenotypes, and importantly, potential drug targets. To determine the functional genomic diversity among Mab strains, we conducted transposon-sequencing (TnSeq) on 21 genetically diverse clinical isolates, including 15 M. abscessus subsp. abscessus isolates and 6 M. abscessus subsp. massiliense isolates, cataloging all the essential and non-essential genes in each strain. Pan-genome analysis revealed a core set of 3845 genes and a large accessory genome of 11,507. We identified 259 core essential genes across the 21 clinical isolates and 425 differentially required genes, representing [~]10% of the Mab core genome. We also identified genes whose requirements were sub-species, lineage, and isolate-specific. Finally, by correlating TnSeq profiles, we identified 19 previously uncharacterized genetic networks in Mab. Altogether, we find that Mab clinical isolates are not only genetically diverse but functionally diverse as well.
Support the authors with ResearchCoin
Support the authors with ResearchCoin