Abstract Human ageing is associated with metabolic dysfunction, sarcopenia and frailty that taken together reduce healthspan. For age-associated diseases and lifespan, ERK, AMPK and mTORC1 represent critical pathways, across species 1–7 . Here we examined the hypothesis that IL11, recently shown to regulate ERK/mTORC1, is an inflammaging factor important for healthspan. As mice age, IL11 is progressively upregulated in liver, skeletal muscle, and fat to stimulate an ERK/AMPK/mTORC1 axis of cellular, tissue- and organismal-level ageing pathologies. In old mice, deletion of Il11 or Il11ra1 protects against metabolic multi-morbidity, sarcopenia, and frailty. Administration of anti-IL11 therapy to elderly mice for six months reactivates an age-repressed program of white fat beiging, reverses metabolic dysfunction, restores muscle function, and reduces frailty. Across studies, inhibition of IL11 lowers epigenetic age, reduces telomere attrition, and preserves mitochondrial function. Towards clinical translation, we generated, humanised, and engineered a neutralising, high-affinity IL11 antibody. These studies identify IL11 as a key inflammaging factor and therapeutic target for mammalian healthspan.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.