Asymmetric localization and translation of mRNAs is used by single cells to sense their environment and integrate extrinsic cues with the appropriate cellular response. Here we investigate the extent to which endosomes impact subcellular patterning of transcripts and provide a platform for localized translation. Using image-based transcriptomics, indirect immunofluorescence, and RNAseq of isolated organelles, we discover mRNAs that associate with early endosomes in a translation-dependent and -independent manner. We explore this in more detail for the mRNA of a major endosomal tethering factor and fusogen, Early Endosomal Antigen 1, EEA1, which localizes to early endosomes in a puromycin-sensitive manner. By reconstituting EEA1 knock-out cells with either the coding sequence or 3UTR of EEA1, we show that the coding region is sufficient for endosomal localization of mRNA. Finally, we use quantitative proteomics to discover proteins associated with EEA1 mRNA and identify CSRP1 as a factor that controls EEA1 translational efficiency. Our findings reveal that multiple transcripts associate with early endosomes in a translation-dependent manner and identify mRNA-binding proteins that may participate in controlling endosome-localized translation.
Support the authors with ResearchCoin