PurposeVariants in MYBPC3 causing loss-of-function are the most common cause of HCM. However, a substantial number of patients carry missense variants of uncertain significance (VUS) in MYBPC3. We hypothesize that a structural-based algorithm, STRUM, which estimates the effect of missense variants on protein folding, will improve clinical risk stratification of patients with HCM and a MYBPC3 VUS. MethodsAmong 7,963 patients in the multi-center Sarcomeric Human Cardiomyopathy Registry, 120 unique missense VUSs in MYBPC3 were identified. Variants were evaluated for their effect on subdomain folding and a stratified time-to-event analysis for an overall composite endpoint (first occurrence of ventricular arrhythmia, heart failure, all-cause mortality, atrial fibrillation, and stroke) was performed for patients with HCM and a MYBPC3 missense VUS. ResultsWe demonstrated that patients carrying a MYBPC3 VUS predicted to cause subdomain misfolding (STRUM +, {Delta}{Delta}G [≤]-1.2 kcal/mol) exhibited a higher rate of adverse events compared to those with a STRUM-VUS (Hazard Ratio=2.29, P=0.0282). In silico saturation mutagenesis of MYBPC3 identified 4,943/23,427 (21%) missense variants that were predicted to cause subdomain misfolding. ConclusionsSTRUM enables clinical risk stratification of patients with HCM and a MYBPC3 VUS and has the capacity to improve prognostic predictions and clinical decision making.
Support the authors with ResearchCoin
Support the authors with ResearchCoin