2.(1) BackgroundMany nucleotides in 23S rRNA are methylated post-transcriptionally by methyltransferases and cluster around the peptidyltransferase center (PTC) and the nascent peptidyl exit tunnel (NPET) located in 50S subunit of 70S ribosome. Biochemical interactions between a nascent peptide and the tunnel may stall ribosome movement and affect expression levels of the protein. However, no studies have shown a role for NPET on ribosome stalling using an NPET mutant. (2) ResultsA ribosome profiling assay in Streptococcus pneumoniae demonstrates for the first time that an NPET mutant exhibits completely different ribosome occupancy compared to wild-type. We demonstrate, using RNA footprinting, that changes in ribosome occupancy correlate with changes in ribosome stalling. Further, statistical analysis shows that short peptide sequences that cause ribosome stalling are species-specific and evolutionarily selected. NPET structure is required to realize these specie-specific ribosome stalling. (3) ConclusionsResults support the role of NPET on ribosome stalling. NPET structure is required to realize the species-specific and evolutionary conserved ribosome stalling. These findings clarify the role of NPET structure on the translation process.
Support the authors with ResearchCoin
Support the authors with ResearchCoin