Fused in sarcoma/translated in liposarcoma (FUS) is a causative gene of amyotrophic lateral sclerosis (ALS). Mutated FUS causes accumulation of DNA damage and cytosolic stress granule (SG) formation, thereby motor neuron (MN) death. However, key molecular aetiology remains unclear. Here, we applied a novel platform technology, iBRN, "Non-biased" Bayesian gene regulatory network analysis based on induced pluripotent stem cell (iPSC)-derived cell model, to elucidate the molecular aetiology using transcriptome of iPSC-derived MNs harboring FUSH517D. iBRN revealed "hub molecules", which strongly influenced transcriptome network, such as miR-125b-5p-TIMELESS axis and PRKDC for the molecular aetiology. Next, we confirmed miR-125b-5p-TIMELESS axis in FUSH517D MNs such that miR-125b-5p regulated several DNA repair-related genes including TIMELESS. In addition, we validated both introduction of miR-125b-5p and knocking down of TIMELESS caused DNA damage in the cell culture model. Furthermore, PRKDC was strongly associated with FUS mis-localization into SGs by DNA damage under impaired DNA-PK activity. Collectively, our iBRN strategy provides the first compelling evidence to elucidate molecular aetiology in neurodegenerative diseases. HighlightsO_LIA new platform technology, "iBRN", Bayesian gene regulatory network analysis based on iPSC cells C_LIO_LIiBRN identifies hub molecules to strongly influence the gene network in FUS-ALS C_LIO_LIPRKDC specifically acts as a guardian against FUS mis-localization during DNA damage stress C_LIO_LImiR-125b-5p-TIMELESS axis regulates DNA repair-related genes in FUS-ALS. C_LI
Support the authors with ResearchCoin
Support the authors with ResearchCoin