Blastocyst-derived stem cell lines were shown to self-organize into embryo-like structures in 3D cell culture environments. Here, we provide evidence that synthetic embryo-like structures are generated solely based on transcription factor-mediated molecular reprogramming of embryonic stem cells in a simple 3D co-culture system. ESCs in these cultures self-organize into elongated, compartmentalized synthetic embryo-like structures over the course of reprogramming exhibiting anterior visceral endoderm formation and symmetry breaking. Single-cell RNA-Seq reveals transcriptional profiles resembling epiblast, visceral endoderm, and extraembryonic ectoderm of early murine embryos around E4.5-E5.5. Within the epiblast, compartment marker gene expression supports primordial germ cell specification. After transplantation, synthetic embryo-like structures implant in uteri and initiate the formation of decidual tissues. This system allows for fast and reproducible generation of synthetic embryo-like structures, providing further insights into synthetic embryology.
Support the authors with ResearchCoin
Support the authors with ResearchCoin