Inflammation, including reactive oxygen species and inflammatory cytokines in tissue microenvironments amplify the appearance of various post-translational modifications (PTMs) of self-proteins. Previously, a number of PTMs have been identified as autoimmune biomarkers in the initiation and progression of Type 1 diabetes (T1D). Herein, we have identified the citrullination of glucokinase (GK) as a result of inflammation, triggering autoimmunity and affecting its biological functions. Glucokinase is predominantly expressed in hepatocytes to regulate glycogen synthesis, and in pancreatic beta cells, where it acts as a glucose sensor to initiate glycolysis and insulin signaling. Herein, we demonstrate that glucokinase is citrullinated in inflamed non-obese diabetic (NOD) islets as well as in human GK. Autoantibodies against both native and citrullinated GK arise in both spontaneous human T1D and murine models. Likewise, autoreactive CD4+ T cells to both native and citrullinated glucokinase epitopes are present in the circulation of T1D patients. Finally, citrullination alters GK biologic activity and suppresses glucose-stimulated insulin secretion. Our studies define glucokinase as a T1D biomarker, providing new insights into altering glucose metabolism, creating neoautoantigens, and better define the broad impact of PTMs on the tissue pathology of T1D.
Support the authors with ResearchCoin
Support the authors with ResearchCoin