Paper
Document
Download
Flag content
1

DreamDIA-XMBD: deep representation features improve the analysis of data-independent acquisition proteomics

1
TipTip
Save
Document
Download
Flag content

Abstract

We developed DreamDIA-XMBD, a software suite for data-independent acquisition (DIA) data analysis. DreamDIA-XMBD adopts a data-driven strategy to capture comprehensive information from elution patterns of target peptides in DIA data and achieves considerable improvements on both identification and quantification performance compared with other state-of-the-art methods such as OpenSWATH, Skyline and DIA-NN. More specifically, in contrast to existing methods which use only 6 to 10 selected transitions from spectral library, DreamDIA-XMBD extracts additional features from dozens of theoretical elution profiles originated from different ions of each precursor using a deep representation network. To achieve higher coverage of target peptides without sacrificing specificity, the extracted features are further processed by non-linear discriminative models under the framework of positive-unlabeled learning with decoy peptides as affirmative negative controls. DreamDIA-XMBD is written in Python, and is publicly available at https://github.com/xmuyulab/Dream-DIA-XMBD for high coverage and precision DIA data analysis.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.