Paper
Document
Download
Flag content
1

USP28 enables oncogenic transformation of respiratory cells and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K

1
TipTip
Save
Document
Download
Flag content

Abstract

Abstract Oncogenic transformation of lung epithelial cells is a multi-step process, frequently starting with the inactivation of tumor suppressors and subsequent activating mutations in proto-oncogenes, such as members of the PI3K or MAPK family. Cells undergoing transformation have to adjust to changes, such as metabolic requirements. This is achieved, in part, by modulating the protein abundance of transcription factors, which manifest these adjustments. Here, we report that the deubiquitylase USP28 enables oncogenic reprogramming by regulating the protein abundance of proto-oncogenes, such as c-JUN, c-MYC, NOTCH and ΔNP63, at early stages of malignant transformation. USP28 is increased in cancer compared to normal cells due to a feed-forward loop, driven by increased amounts of oncogenic transcription factors, such as c-MYC and c-JUN. Irrespective of oncogenic driver, interference with USP28 abundance or activity suppresses growth and survival of transformed lung cells. Furthermore, inhibition of USP28 via a small molecule inhibitor reset the proteome of transformed cells towards a ‘pre-malignant’ state, and its inhibition cooperated with clinically established compounds used to target EGFR L858R , BRAF V600E or PI3K H1047R driven tumor cells. Targeting USP28 protein abundance already at an early stage via inhibition of its activity therefore is a feasible strategy for the treatment of early stage lung tumours and the observed synergism with current standard of care inhibitors holds the potential for improved targeting of established tumors.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.