Summary Perisomatic inhibition of neocortical pyramidal neurons (PNs) coordinates cortical network activity during sensory processing, and it has been mainly attributed to parvalbumin-expressing basket cells (BCs). However, cannabinoid receptor type 1 (CB1)-expressing interneurons also inhibit the perisomatic region of PNs but the connectivity and function of these elusive – yet prominent – neocortical GABAergic cells is unknown. We found that the connectivity pattern of CB1-positive BCs strongly differs between primary and high-order cortical visual areas. Moreover, persistently active CB1 signaling suppresses GABA release from CB1 BCs in the medial secondary visual cortex (V2M), but not in the primary (V1) visual area. Accordingly, in vivo , tonic CB1 signaling is responsible for higher but less coordinated PN activity in V2M than in V1. Our results indicate a differential CB1-mediated mechanism controlling PN activity, and suggest an alternative connectivity schemes of a specific GABAergic circuit in different cortical areas
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.