The heptarepeats of the C-terminal domain (CTD) of RNA polymerase II (Pol II) are extensively modified throughout the transcription cycle. The CTD coordinates RNA synthesis and processing by recruiting transcription regulation factors as well as RNA capping, splicing and 3end processing factors. The SPOC domain of PHF3 was recently identified as a new CTD reader domain specifically binding to phosphorylated serine-2 residues in adjacent CTD repeats. Here, we establish the SPOC domains of the human proteins DIDO, SHARP and RBM15 as phosphoserine binding modules that can act as CTD readers but also recognize other phosphorylated binding partners. We report the crystal structure of SHARP (SPEN) SPOC-CTD and identify the molecular determinants for its specific binding to phosphorylated serine-5. PHF3 and DIDO SPOC domains preferentially interact with the Pol II elongation complex, while RBM15 and SHARP SPOC domains engage with the m6A writer and reader proteins. Our findings establish the SPOC domain as a major interface between the transcription machinery and regulators of transcription and co-transcriptional processes.
Support the authors with ResearchCoin
Support the authors with ResearchCoin