Abstract Piezo1 belongs to mechano-activatable cation channels serving as biological force sensors. However, the molecular events downstream of Piezo1 activation remain unclear. In this study, we used biosensors based on fluorescence resonance energy transfer (FRET) to investigate the dynamic modes of Piezo1-mediated signaling and revealed a bimodal pattern of Piezo1-induced intracellular calcium signaling. Laser-induced shockwaves (LIS) and its associated shear stress can mechanically activate Piezo1 to induce transient intracellular calcium (Ca [i] ) elevation, accompanied by an increase in FAK activity. Interestingly, multiple pulses of shockwave stimulation caused a more sustained calcium increase and a decrease of FAK activity. Similarly, tuning the degree of Piezo1 activation by titrating either the dosage of Piezo1 ligand Yoda1 or the expression level of Piezo1, produced a similar bimodal pattern of FAK responses. Specifically, a low degree of Piezo1 activation (transient mode) leads to a transient Ca [i] response with FAK activation, whereas a high degree of Piezo1 activation (sustained mode) causes a sustained Ca [i] response with FAK suppression. Further investigation revealed that SHP2 serves as an intermediate regulator mediating this bimodal pattern in Piezo1 sensing and signaling. These results suggest that the degrees of Piezo1 activation induced by both mechanical LIS and chemical ligand stimulation may determine downstream signaling characteristics.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.