Cytomegalovirus (CMV) infection alters natural killer (NK) cell phenotype and function toward a more memory-like immune state. These cells, termed adaptive NK cells, typically express CD57 and NKG2C but lack expression of the Fc receptor {gamma} chain (Gene: FCER1G, FcR{gamma}), PLZF, and SYK. Functionally, adaptive NK cells display enhanced antibody-dependent cellular cytotoxicity (ADCC) and cytokine production. However, the mechanism behind this enhanced function is unknown. To understand what drives cytotoxicity and cytokine production in adaptive NK cells, we optimized a CRISPR/Cas9 system to ablate genes from primary human NK cells. ADCC by human NK cells is exclusively mediated by the CD16A (Fc{gamma}RIIIA) signaling apparatus, which includes FcR{gamma}, CD3{zeta}, SYK, SHP-1, ZAP-70, and the transcription factor PLZF. We ablated the genes encoding these molecules and tested subsequent ADCC and cytokine production. We found that ablating the FcR{gamma} chain caused a modest increase in TNF production. Ablation of PLZF did not enhance ADCC or cytokine production. Importantly, SYK kinase ablation significantly enhanced both cytotoxicity and cytokine production, while ZAP-70 kinase ablation diminished function. Ablation of the phosphatase SHP-1 resulted in mixed effects on function, with NK cells demonstrating enhanced cytotoxicity but reduced cytokine production. These results indicate that the enhanced cytotoxicity and cytokine production of CMV-induced adaptive NK cells is more likely due to the loss of SYK than the lack of FcR{gamma} or PLZF. The lack of SYK expression may limit SHP-1-mediated inhibition of CD16A signaling, leading to enhanced cytotoxicity and cytokine production. In addition to providing mechanistic answers about CMV-induced adaptive NK cell functionality, our results indicate that NK chimeric antigen receptor (CAR) therapeutics that invoke ADCC signaling molecules (e.g., CD3{zeta} chain) may benefit from ablating SYK, while maintaining ZAP-70, to increase functionality.
Support the authors with ResearchCoin
Support the authors with ResearchCoin