Bioadhesive materials and patches are promising alternatives to surgical sutures and staples. However, many existing bioadhesives do not meet the functional requirements of current surgical procedures and interventions. Here we present a translational patch material that exhibits: (1) instant adhesion to wet tissues (2.5-fold stronger than Tisseel, an FDA-approved fibrin glue), (2) ultra-stretchability (stretching to >300% its original length without losing elasticity), (3) compatibility with rapid photo-projection (<2 min fabrication time/patch), and (4) ability to deliver therapeutics. Using our established procedures for the in silico design and optimization of anisotropic-auxetic patches, we create next generation patches for instant attachment to wet and dry tissues while conforming to a broad range of organ mechanics ex vivo and in vivo. Patches coated with exosomes demonstrate robust wound healing capability in vivo without inducing a foreign body response and without the need for patch removal that can cause pain and bleeding. We further demonstrate a new single material-based, void-filling auxetic patch designed for the treatment of lung puncture wounds. TeaserWe demonstrate a sticky and highly elastic patch with conforming designs for dynamic organ repair.
Support the authors with ResearchCoin
Support the authors with ResearchCoin