Soldiers deployed to Iraq and Afghanistan have a higher prevalence of respiratory symptoms than non-deployed military personnel and some have been shown to have a constellation of findings on lung biopsy termed post-deployment respiratory syndrome (PDRS). Since many of the deployers in this cohort reported exposure to sulfur dioxide (SO2), we developed a model of repetitive exposure to SO2 in mice that phenocopies many aspects of PDRS, including adaptive immune activation, airway wall remodeling, and pulmonary vascular disease (PVD). Although abnormalities in small airways were not sufficient to alter lung mechanics, PVD was associated with the development of pulmonary hypertension and reduced exercise tolerance in SO2 exposed mice. Further, we used pharmacologic and genetic approaches to demonstrate a critical role for oxidative stress and isolevuglandins in mediating PVD in this model. In summary, our results indicate that repetitive SO2 exposure recapitulates many aspects of PDRS and that oxidative stress may mediate PVD in this model, which may be helpful for future mechanistic studies examining the relationship between inhaled irritants, PVD, and PDRS.
Support the authors with ResearchCoin
Support the authors with ResearchCoin