BackgroundAge-related loss of strength is disproportionally greater than the loss of mass, suggesting maladaptations in the neuro-myo-tendinous system. Myofibers are often misshaped in aged and diseased muscle, but systematic analyses of large sample sets are lacking. Our aim was to investigate myofiber shape in relation to age, exercise, myofiber type, species, and sex. MethodsPreviously collected vastus lateralis muscle biopsies (n=265) from 197 males and females, covering an age-span of 20 to 97 years, were examined. The gastrocnemius and soleus muscles of 7 C57BL/6 mice were also examined. Immunofluorescence and ATPase stainings of muscle cross-sections were used to measure myofiber cross-sectional area (CSA) and perimeter, from which a shape factor index (SFI) was calculated in a fiber type specific manner (type I and II in humans; type I, IIa, IIx and IIb in mice). Heavy resistance training (RT) was performed 3 times per week for 3-4 months by a subgroup (n=59). Correlation analyses were performed comparing SFI and CSA with age, muscle mass, maximal voluntary contraction (MVC), rate of force development (RFD), and specific force (MVC/muscle mass). ResultsIn human muscle, SFI was positively correlated with age for both type I (R2=0.20) and type II (R2=0.38) myofibers. When subjects were separated into age cohorts, SFI was lower for type I (p80) compared to Old. The increased SFI in old muscle was observed in myofibers of all sizes. Within all three age cohorts, type II myofibers SFI was higher than for type I myofibers (p<0.001), which was also the case in mice muscles (p<0.001). Across age cohorts, there was no difference between males and females in SFI for either type I (p=0.496/0.734) or II (p=0.176/0.585) myofibers. Multiple linear regression revealed that SFI, after adjusting for age and myofiber CSA, has independent explanatory power for 8 out of 10 indices of muscle mass and function. RT reduced SFI of type II myofibers in both Young and Old (p<0.001). ConclusionsHere, we identify type I and II myofiber shape in humans and mice as a hallmark of muscle ageing, that independently predicts volumetric and functional assessments of muscle health. RT reverts the shape of type II myofibers, indicating that lack of neuromuscular activation might lead to myofiber deformity.
Support the authors with ResearchCoin
Support the authors with ResearchCoin