AbstractThe 1858C>T allele of the tyrosine phosphatase PTPN22 is present in 5-10% of the North American population and is strongly associated with numerous autoimmune diseases. Although research has been done to define how this allele potentiates autoimmunity, the influence PTPN22 and its pro-autoimmune allele has in anti-viral immunity remains poorly defined. Here, we use single cell RNA- sequencing and functional studies to interrogate the impact of this pro- autoimmune allele on anti-viral immunity during Lymphocytic Choriomeningitis Virus clone 13 (LCMV-cl13) infection. Mice homozygous for this allele (PEP- 619WW) clear the LCMV-cl13 virus whereas wildtype (PEP-WT) mice cannot. This is associated with enhanced anti-viral CD4 T cell responses and a more immunostimulatory CD8- cDC phenotype. Adoptive transfer studies demonstrated that PEP-619WW enhanced anti-viral CD4 T cell function through virus-specific CD4 T cell intrinsic and extrinsic mechanisms. Taken together, our data show that the pro-autoimmune allele of Ptpn22 drives a beneficial anti-viral immune response thereby preventing what is normally a chronic virus infection. Author SummaryPTPN22 and its alternative allele, 1858C>T, has largely been studied in the context of autoimmunity. Through these studies, researchers defined roles for PTPN22 in regulating T lymphocyte activation, myeloid cell cytokine production, and macrophage polarization. Despite these immune pathways being critical for anti-viral immunity, little work has studied how this allele impacts virus infection. In this study, we examine gene expression and function of immune cell subsets to demonstrate how a common allelic variant of PTPN22, which strongly increases the risk of autoimmune disease, promotes successful clearance of an otherwise chronic viral infection.
Support the authors with ResearchCoin
Support the authors with ResearchCoin