A comprehensive analysis of error sources in monolithic microwave phase shifters due to device size limitations, inductor parasitics, loading effects, and nonideal switches is presented. Each component utilized in the implementation of a monolithic high-pass/low-pass phase shifter is analyzed, and its influence on phase behavior is shown in detail, with an emphasis on the net impact on absolute phase variation. The design of the individual phase-shifter filter sections and the influence of bit ordering on overall performance are also addressed. An X-band 5-bit phase shifter fabricated in a 200-GHz SiGe HBT BiCMOS technology platform is used to validate this analysis and our design methodology and achieves an absolute rms phase error of 4deg and relative rms phase error of 3deg for operation from 8.5 to 10.5 GHz
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.