Paper
Document
Submit new version
Download
Flag content
0

Planck2013 results. XXII. Constraints on inflation

Authors
N/A Planck Collaboration,P. A. R. Ade
N. Aghanim,C. Armitage-Caplan,M. Arnaud,M. Ashdown,F. Atrio-Barandela,J. Aumont,C. Baccigalupi,A. J. Banday,R. B. Barreiro,J. G. Bartlett,N. Bartolo,E. Battaner,K. Benabed,A. Benoit,A. Benoit-Levy,J. -P. Bernard,M. Bersanelli,P. Bielewicz,J. Bobin,J. J. Bock,A. Bonaldi,J. R. Bond,J. Borrill,F. R. Bouchet,M. Bridges,M. Bucher,C. Burigana,R. C. Butler,E. Calabrese,J. -F. Cardoso,A. Catalano,A. Challinor,A. Chamballu,H. C. Chiang,L. -Y Chiang,P. R. Christensen,S. Church,D. L. Clements,S. Colombi,L. P. L. Colombo,F. Couchot,A. Coulais,B. P. Crill,A. Curto,F. Cuttaia,L. Danese,R. D. Davies,R. J. Davis,P. de Bernardis,A. de Rosa,G. de Zotti,J. Delabrouille,J. -M. Delouis,F. -X. Desert,C. Dickinson,J. M. Diego,H. Dole,S. Donzelli,O. Dore,M. Douspis,J. Dunkley,X. Dupac,G. Efstathiou,T. A. Ensslin,H. K. Eriksen,F. Finelli,O. Forni,M. Frailis,E. Franceschi,S. Galeotta,K. Ganga,C. Gauthier,M. Giard,G. Giardino,Y. Giraud-Hiraud,J. Gonzalez-Nuevo,K. M. Gorski,S. Gratton,A. Gregorio,A. Gruppuso,J. Hamann,F. K. Hansen,D. Hanson,D. Harrison,S. Henrot-Versille,C. Hernandez-Monteagudo,D. Herranz,S. R. Hildebrandt,E. Hivon,M. Hobson,W. A. Holmes,A. Hornstrup,W. Hovest,K. M. Huffenberger,A. H. Jaffe,T. R. Jaffe,W. C. Jones,M. Juvela,E. Keihanen,R. Keskitalo,T. S. Kisner,R. Kneissl,J. Knoche,L. Knox,M. Kunz,H. Kurki-Suonio,G. Lagache,A. Lahteenmaki,J. -M. Lamarre,A. Lasenby,R. J. Laureijs,C. R. Lawrence,S. Leach,J. P. Leahy,R. Leonardi,J. Lesgourgues,A. Lewis,M. Liguori,P. B. Lilje,M. Linden-Vernle,M. Lopez-Caniego,P. M. Lubin,J. F. Macias-Perez,B. Maffei,D. Maino,N. Mandolesi,M. Maris,D. J. Marshall,P. G. Martin,E. Martinez-Gonzalez,S. Masi,M. Massardi,S. Matarrese,F. Matthai,P. Mazzotta,P. R. Meinhold,A. Melchiorri,L. Mendes,A. Mennella,M. Migliaccio,S. Mitra,M. -A. Miville-Deschenes,A. Moneti,L. Montier,G. Morgante,D. Mortlock,A. Moss,D. Munshi,J. A. Murphy,P. Naselsky,F. Nati,P. Natoli,C. B. Netterfield,H. U. Norgaard-Nielsen,F. Noviello,D. Novikov,I. Novikov,I. J. O'Dwyer,S. Osborne,C. A. Oxborrow,F. Paci,L. Pagano,F. Pajot,R. Paladini,S. Pandolfi,D. Paoletti,B. Partridge,F. Pasian,G. Patanchon,H. V. Peiris,O. Perdereau,L. Perotto,F. Perrotta,F. Piacentini,M. Piat,E. Pierpaoli,D. Pietrobon,S. Plaszczynski,E. Pointecouteau,G. Polenta,N. Ponthieu,L. Popa,T. Poutanen,G. W. Pratt,G. Prezeau,S. Prunet,J. -L. Puget,J. P. Rachen,R. Rebolo,M. Reinecke,M. Remazeilles,C. Renault,S. Ricciardi,T. Riller,I. Ristorcelli,G. Rocha,C. Rosset,G. Roudier,M. Rowan-Robinson,J. A. Rubino-Martin,B. Rusholme,M. Sandri,D. Santos,M. Savelainen,G. Savini,D. Scott,M. D. Seiffert,E. P. S. Shellard,L. D. Spencer,J. -L. Starck,V. Stolyarov,R. Stompor,R. Sudiwala,R. Sunyaev,F. Sureau,D. Sutton,A. -S. Suur-Uski,J. -F. Sygnet,J. A. Tauber,D. Tavagnacco,L. Terenzi,L. Toffolatti,M. Tomasi,J. Treguer-Goudineau,M. Tristram,M. Tucci,J. Tuovinen,L. Valenziano,J. Valiviita,B. Van Tent,J. Varis,P. Vielva,F. Villa,N. Vittorio,L. A. Wade,B. D. Wandelt,M. White,A. Wilkinson,D. Yvon,A. Zacchei,J. P. Zibin,A. Zonca,A. Benoı̂t,A. Benoit-Lévy,J. Bock,F. Bouchet,R. Butler,J.-F. Cardoso,H. Chiang,G. Chon,D. Clements,L. Colombo,B. Crill,R. Davies,P. Bernardis,A. Rosa,J.-M. Delouis,F.–X. Désert,J. Diego,F. Finelli⋆,S. Henrot-Versillé,Y. Giraud–Héraud,J. González-Nuevo,S. Hildebrandt,K. Huffenberger,W. Jones,E. Keihänen,P. Ade,F. Atrio‐Barandela,M. Ballardini,R. Barreiro,Matthias Bartelmann,Richard Battye
+273 authors
,G. Hurier
Published
Jan 29, 2014
Show more
Save
TipTip
Document
Submit new version
Download
Flag content
0
TipTip
Save
Document
Submit new version
Download
Flag content

Abstract

We analyse the implications of the Planck data for cosmic inflation. The Planck nominal mission temperature anisotropy measurements, combined with the WMAP large-angle polarization, constrain the scalar spectral index to be ns = 0.9603 ± 0.0073, ruling out exact scale invariance at over 5σ.Planck establishes an upper bound on the tensor-to-scalar ratio of r< 0.11 (95% CL). The Planck data thus shrink the space of allowed standard inflationary models, preferring potentials with V′′< 0. Exponential potential models, the simplest hybrid inflationary models, and monomial potential models of degree n ≥ 2 do not provide a good fit to the data. Planck does not find statistically significant running of the scalar spectral index, obtaining dns/ dlnk = − 0.0134 ± 0.0090. We verify these conclusions through a numerical analysis, which makes no slow-roll approximation, and carry out a Bayesian parameter estimation and model-selection analysis for a number of inflationary models including monomial, natural, and hilltop potentials. For each model, we present the Planck constraints on the parameters of the potential and explore several possibilities for the post-inflationary entropy generation epoch, thus obtaining nontrivial data-driven constraints. We also present a direct reconstruction of the observable range of the inflaton potential. Unless a quartic term is allowed in the potential, we find results consistent with second-order slow-roll predictions. We also investigate whether the primordial power spectrum contains any features. We find that models with a parameterized oscillatory feature improve the fit by Δχ2eff ≈ 10; however, Bayesian evidence does not prefer these models. We constrain several single-field inflation models with generalized Lagrangians by combining power spectrum data with Planck bounds on fNL. Planck constrains with unprecedented accuracy the amplitude and possible correlation (with the adiabatic mode) of non-decaying isocurvature fluctuations. The fractional primordial contributions of cold dark matter (CDM) isocurvature modes of the types expected in the curvaton and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL), respectively. In models with arbitrarily correlated CDM or neutrino isocurvature modes, an anticorrelated isocurvature component can improve the χ2eff by approximately 4 as a result of slightly lowering the theoretical prediction for the ℓ ≲ 40 multipoles relative to the higher multipoles. Nonetheless, the data are consistent with adiabatic initial conditions.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.