Paper
Document
Submit new version
Download
Flag content
0

European Pulsar Timing Array limits on an isotropic stochastic gravitational-wave background

Authors
Lindley Lentati,Stephen R. Taylor
Chiara M. F. Mingarelli,Alberto Sesana,Sotiris A. Sanidas,Alberto Vecchio,R. Nicolas Caballero,K. J. Lee,Rutger van Haasteren,Stanislav Babak,Cees G. Bassa,Patrick Brem,Marta Burgay,David J. Champion,Ismael Cognard,Gregory Desvignes,Jonathan R. Gair,Lucas Guillemot,Jason W. T. Hessels,Gemma H. Janssen,Ramesh Karuppusamy,Michael Kramer,Antoine Lassus,Patrick Lazarus,Kuo Liu,Stefan Osłowski,Delphine Perrodin,Antoine Petiteau,Andrea Possenti,Mark B. Purver,Pablo A. Rosado,Roy Smits,Ben Stappers,Gilles Theureau,Caterina Tiburzi,Joris P. W. Verbiest,L. Lentati,Stephen Taylor,Y. Minenkov,S. Sanidas,A. Vecchio,R. Caballero,K. Lee,Rutger Haasteren,C. Aulbert,C. Bassa,P. Brem,M. Burgay,D. Champion,I. Cognard,P. Freire,J. Gair,L. Guillemot,J. Hessels,G. Janssen,R. Karuppusamy,M. Krämer,A. Lassus,P. Lazarus,K. Liu,S. Osłowski,D. Perrodin,A. Petiteau,A. Possenti,M. Purver,P. Rosado,R. Smits,B. Stappers,G. Theureau,C. Tiburzi
+68 authors
,J. Verbiest
Published
Aug 31, 2015
Show more
Save
TipTip
Document
Submit new version
Download
Flag content
0
TipTip
Save
Document
Submit new version
Download
Flag content

Abstract

We present new limits on an isotropic stochastic gravitational-wave background (GWB) using a six pulsar dataset spanning 18 yr of observations from the 2015 European Pulsar Timing Array data release. Performing a Bayesian analysis, we fit simultaneously for the intrinsic noise parameters for each pulsar, along with common correlated signals including clock, and Solar System ephemeris errors, obtaining a robust 95$\%$ upper limit on the dimensionless strain amplitude $A$ of the background of $A<3.0\times 10^{-15}$ at a reference frequency of $1\mathrm{yr^{-1}}$ and a spectral index of $13/3$, corresponding to a background from inspiralling super-massive black hole binaries, constraining the GW energy density to $\Omega_\mathrm{gw}(f)h^2 < 1.1\times10^{-9}$ at 2.8 nHz. We also present limits on the correlated power spectrum at a series of discrete frequencies, and show that our sensitivity to a fiducial isotropic GWB is highest at a frequency of $\sim 5\times10^{-9}$~Hz. Finally we discuss the implications of our analysis for the astrophysics of supermassive black hole binaries, and present 95$\%$ upper limits on the string tension, $G\mu/c^2$, characterising a background produced by a cosmic string network for a set of possible scenarios, and for a stochastic relic GWB. For a Nambu-Goto field theory cosmic string network, we set a limit $G\mu/c^2<1.3\times10^{-7}$, identical to that set by the {\it Planck} Collaboration, when combining {\it Planck} and high-$\ell$ Cosmic Microwave Background data from other experiments. For a stochastic relic background we set a limit of $\Omega^\mathrm{relic}_\mathrm{gw}(f)h^2<1.2 \times10^{-9}$, a factor of 9 improvement over the most stringent limits previously set by a pulsar timing array.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.