ABSTRACT The pubertal period involves dynamic white matter development. This period also corresponds with rapid gains in higher cognitive functions including attention, as well as increased risk of developing mental health difficulties. This longitudinal study comprised children aged 9-13 years (n=130). Diffusion magnetic resonance imaging (dMRI) data were acquired (b=2800 s/mm 2 , 60 directions) at two time-points. We derived measures of fibre density and morphology using the fixel-based analysis framework and performed a tract-based mixed-effects modelling analysis to understand patterns of white matter development with respect to age, pubertal stage, attentional difficulties, and internalising and externalising problems. We observed significant increases in apparent fibre density across a large number of white matter pathways, including major association and commissural pathways. We observed a linear relationship between fibre density and morphology with pubertal stage, in the right superior longitudinal fasciculus and in the right inferior longitudinal fasciculus. In terms of symptom severity, fibre density was positively associated with attentional dysfunction in the right uncinate fasciculus. Overall, white matter development across ages 9-13 years involved the expansion of major white matter fibre pathways, with key right-lateralised association pathways linked with pubertal development and attentional difficulties.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.