Numerous computational methods have been proposed to predict protein-protein interactions, none of which however, considers the original DNA loci of the interacting proteins in the perspective of 3D genome. Here we retrospect the DNA origins of the interacting proteins in the context of 3D genome and discovered that 1) if a gene pair is more proximate in 3D genome, their corresponding proteins are more likely to interact. 2) signal peptide involvement of PPI affects the corresponding gene-gene proximity in 3D genome space. 3) by incorporating 3D genome information, existing PPI prediction methods can be further improved in terms of accuracy. Combining our previous discoveries, we conjecture the existence of 3D genome driven cellular compartmentalization, meaning the co-localization of DNA elements lead to increased probability of the co-localization of RNA elements and protein elements.
Support the authors with ResearchCoin
Support the authors with ResearchCoin