ABSTRACT Calcium imaging is inherently susceptible to detection noise especially when imaging with high frame rate or under low excitation dosage. We developed DeepCAD, a self-supervised learning method for spatiotemporal enhancement of calcium imaging without requiring any high signal-to-noise ratio (SNR) observations. Using this method, detection noise can be effectively suppressed and the imaging SNR can be improved more than tenfold, which massively improves the accuracy of neuron extraction and spike inference and facilitate the functional analysis of neural circuits.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.