The serine incorporator (SERINC) protein family has five paralogous members with 9-11 transmembrane domains. SERINC5 is a potent host restriction factor and antagonized by HIV-1 Nef and two other retroviral accessory proteins via the lysosomal degradation pathway. Here, we investigated human SERINC4 expression and antiviral mechanisms. Unlike its four paralogs, human SERINC4 is subjected to proteasome-mediated turnover, resulting in ~250-fold lower expression than SERINC5. However, when expression was normalized, human SERINC4 restricted HIV-1 replication as effectively as SERINC5, and SERINC4 was also antagonized by Nef via the lysosomal pathway. Although SERINC4 proteins are conserved within primates or rodents, their N-terminal regions are highly variable across species. Interestingly, unlike human SERINC4, murine SERINC4 was stably expressed but had a very poor antiviral activity. We created stable SERINC4 chimeras by replacing the N-terminal region and found that the 1-34 and 35-92 amino acids determine SERINC4 antiviral activity or protein expression, respectively. Using these chimeras, we demonstrate that SERINC4 is incorporated into HIV-1 virions and restricts Tier 1 HIV-1 more effectively than Tier 3 HIV-1. Importantly, SERINC4 increases HIV-1 sensitivity to broadly neutralizing antibodies. Thus, human SERINC4 strongly restricts HIV-1 replication when it is overexpressed, which reflects a potential antiviral activity of this gene product under physiological conditions. HighlightsO_LIIdentification of another potent anti-HIV-1 host factor SERINC4 from the SERINC family C_LIO_LIIdentification of two N-terminal domains that regulate SERINC4 expression and antiviral activity C_LIO_LIUnderstanding the natural degradation of human SERINC4 by the proteasomal pathway C_LIO_LIUnderstanding the important role of the lysosomal pathway in Nef antagonism of host restriction C_LI O_FIG_DISPLAY_L [Figure 1] M_FIG_DISPLAY C_FIG_DISPLAY
Support the authors with ResearchCoin
Support the authors with ResearchCoin